If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+11y-11=0
a = 3; b = 11; c = -11;
Δ = b2-4ac
Δ = 112-4·3·(-11)
Δ = 253
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{253}}{2*3}=\frac{-11-\sqrt{253}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{253}}{2*3}=\frac{-11+\sqrt{253}}{6} $
| -x/5-18=2 | | 0.1x-0.006=0.08x+0.0134 | | 3(s-20)+-13=-13 | | 5+356544324x=2 | | 49x+9=49x+15 | | 14+6b=56 | | 9x=3(7x+28 | | 9x-8=3(3x-2)-12 | | (x^2-3x)^2=(x^2-3x)+8 | | -27-6v=-1-2(1-v) | | -(x-7)=3x-9 | | 8(v-6)-2(7v+8)=8v-6v | | X+4(2+x)=20 | | 2+p=-8 | | 3y^2+11y=-11 | | -x+20=2x+50 | | 9(3y+2)=45 | | (2+k)/2=4 | | g/7+21=27 | | -5(v+7)=7v-29 | | (2x-8)(2x+8)=50 | | (m-11)=(5m-2) | | 6(x-5)4x=3(4x-5) | | 8(x+6)=40x | | 5k+4=14 | | 4(4b-1)=5(b+1) | | 5x+5x+3=153 | | 6x+1+2=15 | | 2+0.1429x=9 | | -25-0.2=0.6n | | x-30.0=49.1 | | 15x-13=-13+7x |